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This article presents stochastic models and
associated tools for the availability assess-
ment of a repairable system. Owing to the
limited scope of the article, we concentrate on
the classical continuous-time pointwise and
asymptotic availabilities: we set E = U ∪ D
with U ∩ D = ∅, where U and D stand for the
up- and down-state sets, respectively; the sys-
tem state is described by a stochastic process
(Xt)t≥0 with Xt ∈ E, and the point availability
and its asymptotic version are defined as

A (t) = P (Xt ∈ U) for t ≥ 0,

A (∞) = lim t→+∞A (t) .

Other notions of availability may be found in
the literature, please see Point and Inter-
val Availability and Ref. 1, with lots of
references therein.

The article is divided into three sections.
The section titled ‘‘Availability in Alternat-
ing Renewal Models’’ is devoted to two-state
systems, which are considered to be either up
or down, with no in-between states. In this
case, the system is commonly modeled by a
so-called alternating renewal process, which
has been extensively studied in the relia-
bility literature [2,3], see also Alternating
Renewal Processes.

The section titled ‘‘Availability in Markov
and Semi-Markov Models’’ deals with sys-
tems with finitely many possible states:
typically, such systems are formed of com-
ponents, which can be up or down, leading to
more or less degraded up- and down-states.
In such a context, the most commonly used
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stochastic model is a jump Markov process
with a finite state space, which has been
thoroughly studied and broadly used in
industry [4], see also the section titled
‘‘Continuous-time Markov Chains (CTMCs)’’
in this encyclopedia. Such a model implies
that both failure and repair rates should
remain constant. This drawback has lead
to the development and use of semi-Markov
processes, which allow for a little more mod-
eling flexibility [5,6]; see also Semi-Markov
Processes. The section titled ‘‘Markov
Models’’ deals with jump Markov processes
and the section titled ‘‘Semi-Markov Models’’
with semi-Markov processes.

Finally, the section titled ‘‘Availability
in Regenerative and Markov Regenerative
Models’’ is devoted to more general systems,
which present regenerative and Markov
regenerative properties, with no restrictive
condition on the state space or other: between
(Markov) regeneration points, the system
may have a very general behavior, see [7],
Regenerative Processes, and Markov
Regenerative Processes for details. As
we shall see, the (Markov) regeneration
property then allows to concentrate on the
behavior of the system between (Markov)
regeneration points, to derive both point and
asymptotic availabilities.

In order to illustrate the different stochas-
tic models and associated tools, a small and
educational example is used all over the
article, under various assumptions: a series
system is considered, which is formed of
two stochastically independent components
A and B, with respective failure and repair
rates (λA (x) , μA (x)) and (λB (x) , μB (x)). (The
components’ repair durations and times to
failure are hence assumed to admit a density
with respect to Lebesgue measure). The sys-
tem always starts from its perfect working
state. Owing to its structure, the system is
down as soon as one component is down. A
repair immediately begins at the failure and
puts a component back to its perfect work-
ing state (as good as new repairs). According
to the cases, the failure of one component
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(and hence of the system) may involve the
suspension of the other or not, that is by
failure of one component, the other one may
go on aging and undertake failure or not,
with an eventually reduced failure rate. In
each case, both components may be entirely
renewed (the repair is then said to be com-
plete) or only the down component. Finally,
the failure and repair rates may be constant
or general, and the components identical or
not.

A very good reference for a deeper insight
on the models presented here and for other
examples is Ref. 7; for the stochastic tools,
see also Refs 5 and 8–10.

Throughout the article, if T stands for
a generic random variable (r.v.), PT stands
for its distribution, E (T) for its expectation,
FT (t) = P (T ≤ t) for its cumulative distri-
bution function, and FT (t) = P (T > t) = 1 −
FT (t) for its survival function.

AVAILABILITY IN ALTERNATING RENEWAL
MODELS

The Example

We assume both components to be identical
with a common failure rate λ (x) and a repair
to be complete, with repair rate μ (x); we
consequently assume that the repair dura-
tion always is the same, independent of the
degradation state of the system. The length
of an up-period is the minimum of two inde-
pendent r.v.s with common rate λ (x) and
we have a succession of alternating up- and
down independent periods, with respective
associate rates 2λ (x) and μ (x). The behav-
ior of the system may then be modeled by a
so-called alternating renewal process.

The General Case

A system is considered, which evolves accord-
ing to an alternating renewal process (Xt)t≥0,
where we set Xt = 1 when the system is up
at time t and Xt = 0 when it is down. The
system is assumed to start from its perfect
working state at time t = 0. The successive
up-periods are denoted by U1, . . . , Un, . . .
and the down ones by V1, . . . , Vn, . . . Set-
ting Tn = ∑n

i=1 (Ui + Vi) for n ≥ 1, the points

T0 = 0, T1, . . . , Tn, . . . appear as renewal
points for the process (Xt)t≥0. In order to
avoid the trivial case T0 = T1 = T2 = · · · = 0
almost surely and following Ref. 5, we assume
that P (T1 = 0) < 1.

With this setting, the system point avail-
ability is

A (t) = P (Xt = 1)

=
+∞∑
n=0

P (Tn ≤ t < Tn + Un+1)

for all t ≥ 0.
The main tool for its study is the renewal

equation (1) fulfilled by A (t), provided just
later. To derive it, we classically separate the
cases where the first renewal arrives after or
before t and we get:

A (t) = P (Xt = 1; t < T1) + P (Xt = 1; t ≥ T1)

= P (t < U1)

+
∫

[0,t]
P (Xt = 1|T1 = u) PT1

(
du

)
.

Using the regeneration property at time T1
(see Renewal Function and Renewal-
Type Equations or Ref. 2 for more details),
we easily get∫

[0,t]
P (Xt = 1|T1 = u) PT1

(
du

)

=
∫

[0,t]
A (t − u) PT1

(
du

) = (
A ∗ PT1

)
(t)

and

A (t) = FU1 (t) + (
A ∗ PT1

)
(t) , (1)

where PT1

(
du

) = (
PU1+V1

) (
du

) = (
PU1 ∗ PV1

)(
du

)
and ∗ stands for the standard

convolution.
Apart from very special cases (e.g., expo-

nential distributions), the renewal equation
(1) cannot be solved explicitly and numerical
procedures have to be developed [11,12].

Limit theorems for solutions of renewal
equations (see Limit Theorems for
Renewal Processes) allow to get the asymp-
totic availability from Equation (1): setting
MUT = E (U1) to be the Mean Up Time of
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the system on a cycle and MDT = E (V1) to
be its Mean Down Time, we get:

A (∞) =

∫ +∞

0
FU1 (u) du

E (T1)

= E (U1)

E (U1) + E (V1)

= MUT
MUT + MUT

, (2)

assuming E (U1) + E (V1) < +∞ and the dis-
tribution of T1 = U1 + V1 to be nonlattice
[13].

Back to the Example

The times to failure of both components
are here assumed to be gamma dis-
tributed � (au, bu), with the following p.d.f.
(probability density function):

fu (x) = 1
(bu)

au � (au)
xau−1e−x/bu1R+ (x)

and parameters (au, bu) = (2, 1/3) (mean =
aubu 
 0.6667). The repairs also are gamma
distributed with parameters (ad, bd) =
(3, 1/36) (mean = adbd 
 0.08333). The point
availability has been computed by discretiza-
tion of Equation (1) and by Monte Carlo
simulations. The results of both methods are
plotted in Fig. 1, where MC stands for Monte
Carlo simulation (5 × 104 histories), MC Sup

and MC Inf stand for the upper and lower
bounds of the associated 95% confidence
band and DM stands for the discretization
method. (Similar notations are used all
over the article). The asymptotic availability
provided by (2) is also indicated in Fig. 1,
with A (∞) 
 0.833.

In most cases, a system may have sev-
eral degraded up-states and/or several down-
states and cannot hence be modeled by an
alternating renewal process. The next section
is devoted to such multistate systems, with
Markovian or semi-Markovian degradation.

AVAILABILITY IN MARKOV AND
SEMI-MARKOV MODELS

Markov Models

The Example: Case of Constant Failure
and Repair Rates. We here come back to
our example, in the case of different com-
ponents with constant failure and repair
rates (λA (x) ≡ λA, μA (x) ≡ μA, λB (x) ≡ λB,
μB (x) ≡ μB). In case of failure of one com-
ponent, the other one is suspended and
cannot fail. The evolution of the system
may then be modeled by a continuous-time
Markov chain (CTMC) (Xt)t≥0 with range
in E = {(1, 1) , (1, 0) , (0, 1)}, where the first
place refers to component A and the second
one to component B, with an ‘‘1’’ indicating
an up component, and an ‘‘0’’ a down one.

Figure 1. Point and asymptotic
availabilities, case of an alter-
nating renewal process.
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(1, 0)

μB

λB

λA

μA

(1, 1)

(0, 1) Figure 2. The Markov graph in case of constant
failure and repair rates.

The corresponding Markov graph is provided
in Fig. 2.

The General Case. In the general case, a
system is considered, which evolves in time
according to a CTMC (Xt)t≥0 with range in
a finite state space E. We set A to be the
generator matrix of (Xt)t≥0 and (Pt)t≥0 to be
its transition semigroup:

Pt (i, j) = Pi (Xt = j)

for all i, j ∈ E and all t ≥ 0, where Pi is the
conditional distribution given that X0 = i, see
the section titled ‘‘Continuous-time Markov
Chains (CTMCs)’’ in this encyclopedia for
more details.

The point availability of the system start-
ing from state i is

Ai (t) =
∑
j∈U

Pt (i, j) =
∑
j∈U

(
etA

)
(i, j) , (3)

where etA refers to the matrix exponentiation.
In case (Xt)t≥0 is irreducible (and hence

recurrent, because of the finite state space),
the CTMC (Xt)t≥0 admits an unique station-
ary probability measure π , such that πA = 0
and

∑
i∈E π (i) = 1, see Asymptotic Behav-

ior of Continuous-Time Markov Chains.
The asymptotic availability is then indepen-
dent of the initial state with

A (∞) =
∑
i∈U

π (i) . (4)

Back to the Example. Owing to the Markov
graph provided in Fig. 2, the generator matrix
of (Xt)t≥0 is given by:

A =
⎛
⎝ −λA − λB λB λA

μB −μB 0
μA 0 −μA

⎞
⎠ .

The point availability of the system is

A(1,1) (t) = P(1,1) (Xt = (1, 1))

= etA ((1, 1) , (1, 1)) .

In case λA = λB = λ and μA = μB = μ, this
easily provides

A(1,1) (t) = μ

2λ + μ
+ 2λ

2λ + μ
e−(2λ+μ)t and

A (∞) = μ

2λ + μ
.

In case of different rates for A and B, we
get

A (∞) = μAμB

λAμB + λBμA + μAμB
,

and an easy but cumbersome expression for
A(1,1) (t), which we do not provide.

Both point and asymptotic availabilities
are plotted in Fig. 3 for λA = 1, λB = 2, μA =
10 and μB = 15, with A (∞) 
 0.811.

In the Markovian case, both point and
asymptotic availabilities hence have an easy
expression with respect to the CTMC transi-
tion probabilities and stationary probability
measure, see Equations (3) and (4). Though
the transition probabilities have an explicit
expression with respect to the generator
matrix (Eq. 3), their numerical evaluation
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Figure 3. Point and asymptotic
availabilities, Markov & semi-
Markov cases.
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however leads to real difficulties in case
of large Markov systems, due to a rapid
explosion of the size of the state space with
the number of components of the system.
This has lead to an extensive literature
devoted to their numerical assessment (see
Computational Methods for CTMCs or
Refs 14 and 15)

Another drawback of the Markovian mod-
els is the underlying assumption of constant
failure and repair rates. Such a restrictive
assumption may be partially removed by
semi-Markov processes, as shown in the next
section.

Semi-Markov Models

The Example: Case of Constant Failure Rates
and General Repair Rates. We consider here,
the same example as in section titled ‘‘The
Example: Case of Constant Failure and
Repair Rates’’ except the fact that the repair
rates are now general [μA (x) and μB (x)],
while both failure rates remain constant
(λA and λB). Just as in section titled ‘‘The
Example: Case of Constant Failure and
Repair Rates’’, no further failure is possible
when the system is down.

The possible changes in the system state
are due to

• the failure of one component (with the
other one suspended in its up-state);

• the end of repair of one component (with
the other component up).

It is then easy to see that at each
transition time, the system forgets its past;
indeed, as the failure rates are constant,
the repair of one component (with the
other one up) puts the system back to its
perfect working state. This means that the
system fulfills the Markov property each
time its state changes and hence behaves
according to a semi-Markov process (Xt)t≥0
(see Semi-Markov Processes).

The General Case. In the general case, a
system is considered, which evolves in time
according to a semi-Markov process (Xt)t≥0
with range in E (finite) and with semi-
Markov transition kernel

(
q

(
i, j, dt

))
i,j∈E: we

recall that q
(
i, j, dt

) = Pi
(
XT1 = j, T1 ∈ dt

)
,

where T1 stands for the first jump time of the
process (Xt)t≥0 (see Semi-Markov Processes
for details). Setting T0 = 0 ≤ T1 ≤ T2 ≤ . . .

to be the successive jump times of (Xt)t≥0, we
assume that Pi (T0 = T1 = T2 = · · · = 0) = 0
for all i ∈ E, which here again avoids
trivialities.

The point availability of the semi-Markov
system starting from state i is

Ai (t) = Pi (Xt ∈ U) =
∑
j∈U

Pi (Xt = j)
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for all i ∈ E. By separating the cases where
the first jump arrives after or before t as in
the case of an alternating renewal process,
we get

Ai (t) = Pi (Xt ∈ U, T1 > t) + Pi (Xt ∈ U, T1 ≤ t)

= 1U (i) Pi (T1 > t)

+
∑
k∈E

∫
[0,t]

Pi
(
Xt ∈ U|T1 = u, XT1 = k

)
× q

(
i, k, du

)
Applying the Markov property at time T1,

we have

Pi
(
Xt ∈ U|T1 = u, XT1 = k

)
= Pk (Xt−u ∈ U) = Ak (t − u)

This provides

Ai (t) = 1U (i) Pi (T1 > t) + (A ∗ q) (i, t) , (5)

where we set

(A ∗ q) (i, t) =
∑
k∈E

∫
[0,t]

Ak (t − u) q
(
i, k, du

)
.

(6)

Equation (5) for i ∈ E and t ≥ 0 are known
as Markov renewal equations, which have
no explicit solutions in the general case and
have to be solved numerically (see Limit
Theorems for Markov Renewal Processes
and Refs 1 and 16).

In the case that the semi-Markov process
(Xt)t≥0 is irreducible and that the sojourn
times are nonarithmetic with finite means,
the process (Xt)t≥0 admits a unique station-
ary probability measure π , which is known
to be identical to the unique stationary
probability measure of a CTMC (Yt)t≥0,
which has the same transition matrix(
Pi

(
XT1 = j

) = Pi
(
YT1 = j

))
and same mean

sojourn times Ei (T1) as (Xt)t≥0 (see Refs
5 and 8 for details). This implies that
both asymptotic availabilities for the semi-
Markov process (Xt)t≥0 and for the Markov
process (Yt)t≥0 are identical.

Back to the Example. The semi-Markovian
kernel associated with (Xt)t≥0 is

(
q

(
i, j, dt

))
i,j∈E =⎛

⎝ 0 λBe−(λA+λB)tdt λAe−(λA+λB)tdt
fμB (t) dt 0 0
fμA (t) dt 0 0

⎞
⎠,

where fμA (t) and fμB (t) stand for the respec-
tive p.d.f.s associated with r.v.s with respec-
tive hazard rates μA (t) and μB (t), where

fμA (t) = μA (t) e− ∫ t
0 μA(u)du,

for all t ≥ 0 and a similar expression for
fμB (t), with μB (t) substituted to μA (t).

The Markov renewal equations may here
be written as

A(1,0) (t) =
∫ t

0
A(1,1) (t − u) fμB (u) du, (7)

A(0,1) (t) =
∫ t

0
A(1,1) (t − u) fμA (u) du, (8)

A(1,1) (t) = e−(λA+λB)t

+
∫ t

0
A(1,0) (t − u) λBe−(λA+λB)udu

+
∫ t

0
A(0,1) (t − u) λAe−(λA+λB)udu.

(9)

Substituting (7) and (8) in (9) easily
provides

A(1,1) (t) = e−(λA+λB)t

+
∫ t

0
A(1,1) (v) G (t − v) dv

with

G (v) =
∫ v

0

(
λBfμB (v − u) + λAfμA (v − u)

)
× e−(λA+λB)u du,

which we solve by discretization. The
results are provided in the same figure as
for the Markovian case (Fig. 3), with the
same constant failure rates (λA = 1, λB = 2)
and gamma repair rates � (3, 1/30) and
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� (3.5, 1/52.5) with the same means as in the
Markovian case from section titled ‘‘Back to
the Example’’ in the section titled ‘‘Markov
Models’’ (1/10 and 1/15, respectively). As
expected, we can observe that the asymptotic
availability is the same in both cases, with
a slower convergence in the Markovian
case.

In a semi-Markov model, the system
forgets its past each time it changes state. In
the example, assume that the failure rates
are not constant any more. In that case, at
the end of repair of the down component,
the suspended one is not as good as new
and it needs to be repaired for the system
to be entirely renewed (and for the system
to forget its past). If the duration of this
repair is independent of the degradation
level of the suspended component, the
system still is semi-Markovian. However,
under the more realistic assumption of a
repair depending on the degradation level,
this is not true any more. This shows a
limitation of the modeling power of the
semi-Markov processes. (A classical other
limitation is that a parallel two-unit system
formed of two independent semi-Markovian
components is not semi-Markovian any
more). We now come to regenerative and
semiregenerative models, which allow for
more flexibility.

AVAILABILITY IN REGENERATIVE AND
MARKOV REGENERATIVE MODELS

Regenerative Models

The Example. We consider here the case
of general failure and repair rates, with sus-
pension of the up component in case of fail-
ure. At failure, the system is completely
repaired. A single repairman is considered
so that the repair durations of both compo-
nents are added. The repair of one component
now depends on its degradation level: for
a down component, its repair rate is μA (x)

or μB (x), as before. When a component has
been functioning for a duration u, the repair
rate to bring it back to its perfect working
state is some μ̃A (x, u) (or μ̃B (x, u)), where
μ̃A (x, u) is some decreasing function in u

with limu→+∞ μ̃A (x, u) = μA (x) (the same for
μ̃B (x, u)).

Under the previous assumptions, the state
(1, 1) is a regenerative state in the sense that
each time the system enters this state, it
starts again in a similar way as from the
beginning and forgets its past. The peri-
ods between two successive arrivals in state
(1, 1) are called cycles and the process (Xt)t≥0
appears as a regenerative one (see Regener-
ative Processes).

The General Case. In the general case, a
system is considered, which evolves in time
according to a regenerative process (Xt)t≥0,
with (Tn)n∈N as regeneration times. Follow-
ing the definition of Çinlar [5], this means
that (Tn)n∈N are the points of a renewal pro-
cess such that

1. the Tn’s are stopping times adapted to
(Xt)t≥0 (and P (T1 = 0) < 1);

2. at each Tn, the future process
(
Xt+Tn

)
t≥0

given the past up to Tn (namely
given the σ -algebra generated by
{Xu, u ≤ Tn}), is identically distributed
as (Xt)t≥0.

See Regenerative Processes or Ref. 5 for
more details. This means that at each Tn,
a regenerative system starts again as from
the beginning and forgets its past. The evolu-
tion of the system between two regeneration
points may here be very general.

Using the regeneration property at time
T1, the point availability satisfies the follow-
ing renewal equation:

A (t) = P (Xt ∈ U, T1 > t) + P (Xt ∈ U, T1 ≤ t)

= P (Xt ∈ U, T1 > t)

+
∫

[0,t]
A (t − u) PT1

(
du

)
. (10)
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Assuming the distribution of T1 to be non-
lattice and E (T1) < +∞, we derive [5]:

A (∞) =

∫ +∞

0
P (Xt ∈ U, T1 > t) dt

E (T1)

=
E

(∫ T1

0
1U (Xt) dt

)

E (T1)
= MUT

MUT + MDT
,

(11)

where MUT and MDT, are respectively, the
cumulated Mean Up Time and Mean Down
Time of thex system on a cycle.

Back to the Example. We assume that
both times to failure are gamma distributed
with the same means as in section titled
‘‘Availability in Markov and Semi-Markov
Models’’ (where the failure rates were
constant), and we take � (2, 1/2) and
� (2, 1/4). The repair durations in case of
failure are identically distributed as in
the semi-Markovian case: �

(
aRA , bRA

)
and

�
(
aRB , bRB

)
with

(
aRA , bRA

) = (3, 1/30) and(
aRB , bRB

) = (3.5, 1/52.5), and respective
means mRA = aRAbRA and mRB = aRBbRB .
When component A has been functioning for
u time units, its repair duration is gamma
distributed: �

(
aRA , bRA

(
1 − 1

1+uα

))
, with

mean mRA

(
1 − 1

1+uα

)
, where we assume

α = 1/8. The distribution of the repair
duration is similar for component B, with(
aRB , bRB

)
substituted to

(
aRA , bRA

)
and the

same α.
A cycle begins with an up-period of length

U1 = min
(
ZλA , ZλB

)
, where Zν stands for an

r.v. with hazard rate ν (t), and where ZλA and
ZλB are independent. (Other natural condi-
tions of independence will be assumed further
on, which will not be detailed). Then comes a
down-period with length

V1 =
(

ZμA + Z
μB

(
·,ZλA

)) 1{
ZλA

<ZλB

}

+
(

ZμB + Z
μA

(
·,ZλB

)) 1{
ZλA

≥ZλB

},

where, given ZλA , the distribution of

Z
μB

(
·,ZλA

) is �

(
aRB , bRB

(
1− 1

1+
(
ZλA

)α

))
with

mean

E

(
Z

μB

(
·,ZλA(·)

)|ZλA

)
= mRB

(
1− 1

1 + (
ZλA

)α

)
.

(12)

Similarly,

E

(
Z

μA

(
·,ZλB(·)

)|ZλB

)
=mRA

(
1− 1

1 + (
ZλB

)α

)
.

Note that though up- and down periods are
alternating, their durations are not indepen-
dent so that an alternating renewal process
cannot model the system evolution.

We have

P (Xt ∈ U, T1 > t) = P (U1 > t)

= FλA (t) FλB (t) ,

and the relation T1 = U1 + V1 then allows
to get a discretized version of Equation (10),
which we solve numerically. The results are
plotted in Fig. 4, as well as those by Monte
Carlo simulations.

The asymptotic availability is computed
via (11), with

MUT = E (U1) = E
(
min

(
ZλA , ZλB

))
=

∫ +∞

0
FλA (t) FλB (t) dt =

def
UAB

and MDT = E (V1) = RAB + RBA, where

RAB = E

((
ZμA + Z

μB

(
·,ZλA

)) 1{
ZλA

<ZλB

})

= E
(
ZμA

)
P

(
ZλA < ZλB

)
+ E

(
E

(
Z

μB

(
·,ZλA

)1{
ZλA

<ZλB

}|ZλA

))

= mRA

∫ +∞

0
fλA (u) FλB (u) du

+ E

(
E

(
Z

μB

(
·,ZλA

)|ZλA

)

× E

(
1{

ZλA
<ZλB

}|ZλA

))
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Figure 4. Point and asymptotic
availabilities, regenerative case.
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= mRA

∫ +∞

0
fλA (u) FλB (u) du

+ E

(
mRB

(
1 − 1

1 + (
ZλA

)α

)
FλB

(
ZλA

))

(13)

=
∫ +∞

0

(
mRA + mRB

(
1 − 1

1 + uα

))

× fλA (u) FλB (u) du

using Equation (12) for (13). A similar expres-
sion is valid for RBA and we finally have:

A (∞) = UAB

UAB + RAB + RBA

where each quantity is now easily com-
putable. This provides: A (∞) 
 0.776.

As already mentioned, regenerative pro-
cesses allow for a great flexibility as for
the system behavior between regeneration
points. However, the numerical assessment
of the asymptotic availability requires the
computation of both mean up time and mean
down time on a cycle, which is not always
that easy, even in rather simple cases. (As
for the point availability, it is generally still
more complicated). In some cases, the system
may forget its past when entering several
states and not only one single state, which
may lead to a so-called Markov regenerative
process. Though most of the Markov regen-
erative processes used in reliability also are

regenerative processes, the Markov regen-
eration property usually leads to different
expressions for the point and/or asymptotic
availabilities from those obtained with the
simple regeneration property, which may be
easier to compute. The discussion on Markov
Regenerative models follows.

Markov Regenerative Models

The Example. We first come back to our
example in a slightly modified version:
both failure rates are constant (λA (x) ≡ λA,
λB (x) ≡ λB), and the repair rates are general
(μA (x) and μB (x)) as in section titled ‘‘The
Example: Case of Constant Failure Rates
and General Repair Rates.’’ However, in case
of failure of one component, the other one
may now fail while the down component
is repaired, at a lower rate however (λ

′
A

and λ
′
B with λ

′
A ≤ λA and λ

′
B ≤ λB). There is

one single repairman and the repair of one
component is completed up to its end, even
in case of arrival of a new failure. To model
it, we add two new states to our system:
state (0R, 0) which means that component A
is down under repair and that component B
is down, waiting for a repair; the same for
state (0, 0R).

Entrance in state (1, 1) clearly is a regen-
erative point and (Xt)t≥0 is a regenerative
process. However, the mean length of a
cycle, here, is a little complicated by the
fact that lots of different scenarios are
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possible, such as (1, 1) → (0, 1) → (0R, 0) →
(1, 0) → (0, 0R) → (0, 1) → . . . → (1, 1). An
alternative model is however possible, which
leads to simpler computations; indeed,
because of the constant failure rates, the
system forgets its past each time it enters
states (1, 1), (1, 0) and (0, 1). Note that the
system, however, does not fulfill the same
property when entering states (0R, 0) and
(0, 0R). In such cases, the repair of one
component has indeed already begun, with
a general repair rate. The process (Xt)t≥0 is
consequently not semi-Markovian. One can
nevertheless consider a new process (Yt)t≥0
defined on a new state space F = {1, 2, 3},
which enters state 1, 2, and 3 each time
(Xt)t≥0 enters the states (1, 1), (1, 0) , and
(0, 1), respectively. The possible transitions
for (Xt)t≥0 from state (1, 1) are (1, 1) → (1, 0)

and (1, 1) → (0, 1) with respective rates λB

and λA. The possible transitions for (Yt)t≥0
from state 1 hence are 1 → 2 and 1 → 3
with the same respective rates, λB and
λA. From state (1, 0), the process (Xt)t≥0
may go back to state (1, 1) with probability
p1 = P

(
ZμB ≤ Z

λ
′
A

)
, where Z

λ
′
A

and ZμB
stand for independent r.v.s with respective
hazard rates λ

′
A and μB (t). From state (1, 0),

the process (Xt)t≥0 may also go to state (0, 0R)

and next to state (0, 1) with probability
1 − p1. This means that from state 2, the
possible transitions for (Yt)t≥0 are 2 → 1
and 2 → 3, with respective probabilities p1
and 1 − p1. Moreover, the time spent in
state 2 by (Yt)t≥0 is some r.v. with hazard
rate μB (t). A similar reasoning is valid
for state (0, 1) and proves that the process
(Yt)t≥0 is semi-Markovian, with the following
semi-Markovian kernel:

(
q

(
i, j, dt

))
i,j∈F =

⎛
⎝ 0 λBe−(λA+λB)tdt λAe−(λA+λB)tdt

p1fμB (t) dt 0 (1 − p1) fμB (t) dt
p2fμA (t) dt (1 − p2) fμA (t) dt 0

⎞
⎠ ,

where p2 = P

(
ZμA ≤ Z

λ
′
B

)
, same notations,

and where fμA (t) and fμB (t) have been
defined in Subsection 2.2.3. Though the
process (Yt)t≥0 does not fully describe the
system evolution, (the process (Xt)t≥0 may
evolve while (Yt)t≥0 remains constant),
the process (Xt)t≥0 forgets its past at
each jump of the semi-Markovian process
(Yt)t≥0. This means that (Xt)t≥0 is a Markov
regenerative process, with (Yt)t≥0 as imbed-
ded semi-Markov process (or

(
Tn, YTn

)
n∈N

as imbedded Markov renewal process,
equivalently).

The General Case. In the general case,
a system is considered, which evolves in
time according to a Markov regenerative (or
semiregenerative) process (Xt)t≥0, with state
space E. Following Ref. 5, this means that
t → Xt (ω) is right continuous and has left-
hand limits for almost all ω and that there
exists a Markov renewal process (Tn, Yn)n∈N

on a state space F (here assumed finite) such
that (i) the Tn’s are stopping times adapted to
(Xt)t≥0 [with Pi (T0 = T1 = T2 = . . . = 0) = 0
for all i ∈ F]; (ii) for each Tn, the r.v.
Yn is measurable with respect to the

σ -algebra σ (Xu, u ≤ Tn) generated by the
past up to Tn; (iii) at each Tn, the future
process

(
Xt+Tn

)
t≥0 given the past up to Tn

(i.e., given σ (Xu, u ≤ Tn)) is identically dis-
tributed on {Yn = i} as (Xt)t≥0 given {Y0 = i}
(see Markov Regenerative Processes for
more details). In other words, this means
that the future of a Markov regenerative
process after Tn only depends on Yn and that
Yn only depends on the past of the process
up to Tn. As in the case of a regenerative
process, the evolution of the system between
two jumps of (Yn)n∈N may be very general.

Setting
(
q

(
i, j, dt

))
i,j∈F to be the semi-

Markov kernel associated to (Tn, Yn)n∈N and
using the Markov property at time T1, the
point availability of the system given that
Y0 = i fulfills the following Markov renewal
equation:

Ai (t) = Pi (Xt ∈ U, T1 > t) + Pi (Xt ∈ U, T1 ≤ t)

= Pi (Xt ∈ U, T1 > t)

+
∑
j∈E

∫
[0,t]

Pi (Xt ∈ U|T1 = u, Y1 = j)

× q
(
i, j, du

)
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= Pi (Xt ∈ U, T1 > t)

+
∑
j∈E

∫
[0,t]

Aj (t − u) q
(
i, j, du

)
= Pi (Xt ∈ U, T1 > t) + (A ∗ q) (i, t) , (14)

where (A ∗ q) (i, t) is defined in Equation (6).
Let us now suppose that the Markov

renewal process (Tn, Yn)n∈N is irreducible
with nonarithmetic sojourn times and means
m (i) = Ei (T1), and let π be the unique sta-
tionary probability measure of the Markov
chain (Yn)n∈N. The asymptotic availability
A (∞) then exists and is [5]

A (∞) =

∑
i∈F

π (i)
∫ +∞

0
Pi (Xt ∈ U, T1 > t) dt

∑
i∈F

π (i) m (i)

=

∑
i∈F

π (i) Ei

(∫ T1

0
1U (Xt) dt

)

Eπ (T1)
(15)

where symbols i and π in Pi, Ei, and Eπ here
refer to the initial distribution of (Yn)n∈N.

This means that the asymptotic availabil-
ity is the quotient of the system mean up time
between arrivals of (Tn, Yn)n∈N divided by the
mean interarrival length of (Tn, Yn)n∈N, when
(Tn, Yn)n∈N is in its steady state.

Back to the Example. We take λA = 1,
λB = 2 as failure rates, and � (3, 1/30),

� (3.5, 1/52.5) for the repair distributions, as
in the semi-Markovian case. We also take
λ

′
A = 0.5 and λ

′
B = 1.

The Markov renewal Equations (14) may
here be written as

A1 (t) = e−(λA+λB)t +
∫ t

0
A2 (t − u) q

(
1, 2, du

)

+
∫ t

0
A3 (t − u) q

(
1, 3, du

)

= e−(λA+λB)t +
∫ t

0

(
λBA2 (t − u)

+λAA3 (t − u)
)

e−(λA+λB)udu,

A2 (t) =
∫ t

0
A1 (t − u) q

(
2, 1, du

)

+
∫ t

0
A3 (t − u) q

(
2, 3, du

)

=
∫ t

0
(p1A1 (t − u)

+ (1 − p1) A2 (t − u)) fμB (u) du,

with

p1 = P

(
ZμB ≤ Z

λ
′
A

)
=

∫ +∞

0
fμB (t) e−λ

′
At dt

= 1(
1 + bRBλ

′
A

)aRB
,

and a similar equation for A2 (t).

Figure 5. Point and asymptotic
availabilities, Markov regenera-
tive case.
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This provides a set of three equations,
which we discretize for their numerical res-
olution. Monte Carlo simulations are also
performed. The results for A(1,1) (t) (= A1 (t))
are provided by both methods in Fig. 5,
as well as the asymptotic availability, eas-
ily provided by Equation (15) with A (∞) 

0.802.

DISCUSSION AND FURTHER READING

In conclusion, we have presented here,
classical stochastic models with (Markov)
regenerative properties. For such models,
the point availability has been proved to
satisfy (Markov) renewal equations. The
solving of such equations has, however,
been seen to be generally impossible in full
form and requires numerical procedures.
We have here made the choice to use
discretization techniques, which are easy
to implement. Also, they can provide upper
and lower bounds for the solutions. The
results have been checked through Monte
Carlo simulations, which are commonly
used by practitioners in the reliability field,
with generally longer computing times,
however. Another numerical method might
have been to use Laplace transforms, which
are available in full form for the quantities
of interest. The great progress made in
their inversion in the last decade makes
this method very appealing. Numerical
difficulties may however arise in case of
small or big arguments. Also, the precision
of the results is not always available. See
Ref. 17 for more details and references on
the subject.

As for the asymptotic availability, it is
usually simpler to compute than the point
availability: it typically requires to evalu-
ate the mean cycle duration and the mean
up time on a cycle in the regenerative case,
or similar quantities linked to the underly-
ing Markov renewal process in the Markov
regenerative case.

The classical models presented here actu-
ally sometimes (often?) appear as restrictive
in the applications and even very simple
systems may not meet with their assump-
tions: as an example, let us come back to

our two-unit series system, where one com-
ponent is suspended when the other is down,
with general repair and failure rates and
only down components repaired. In that case,
the system never forgets its past so that
the system meets with none of the previ-
ous models. Monte Carlo simulations may
however be performed, to compute both point
and asymptotic availabilities. Another pos-
sibility is to use new models coming from
dynamic reliability [18], which are presently
arriving in ‘‘classical’’ reliability. Such mod-
els are called piecewise deterministic Markov
processes [19] and have been proved to have
a great modeling power [20]. Like the models
presented here, their numerical assessment
may be done by Monte Carlo simulations or
by discretization methods [21,22].

Another drawback of the models pre-
sented here is that no aging is taken into
account in the sense that at (Markov) regen-
eration points, the future evolution of the
system given its present state is a stochastic
replica of the past given the same starting
state, without any evolution. Other possible
models, which take aging into account
are geometric processes, where up and
down periods alternate with geometrically
decreasing and increasing durations [23],
nonhomogeneous Markov and semi-Markov
processes with finite state spaces [24], or
nonhomogeneous piecewise deterministic
Markov processes [25].
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